GRYFIT

VARIABLE PATTERN DIFFUSER

FUNCTION

VBF variable pattern diffusers with are designed for air-conditioning systems in high buildings such as shopping centres, atriums, concert halls and sports halls. They may also be used in industrial premises and storehouses etc.

DESCRIPTION

VBF diffuser in a standard version is made of stell painted RAL 9010 colour. At request it is possible to paint the diffuser with any other RAL colour. The diffuser construction consists of two perforated plates which rotate around each other. Distributing system inside the diffuser provides air distribution on the whole effective surface of the diffuser.

The diffusers can be used both for cooling and heating. Their variable air pattern allow for adjustment of the range and direction of supplied airflow to the rooms with different heights.

When the airflow is directed vertically downward while heating, airflow velocity falls quickly and it influences on decrease in quantity of air pollution. In a case of cooling vertical direction of the airflow provide with optimal conditions for its diffussion and in the process it improves comfort in occupied zone. The airflow can be adjusted manually, automatically as regards airflow temperature - cooling/heating (self-adjustable piston) or with reference to ambient temperature (electric servomotor).

ACCESORIES

- Airflow adjustment:
- manual
- self-actuating piston
- electric servomotor

INSTALLATION

VBF diffuser can be installed directly at the end of the ventilation duct with circular sections or on the ceiling with the use of slings.

GRYFIT

SELECTION - ISOTHERMAL AIR SUPPLY

VERTICAL AIR SUPPLY

HORIZONTAL AIR SUPPLY

GRYFIT air handling intelligence – ul. Langiewicza 62 – 96-050 Konstantynów Łódzki – Poland tel.: +48 (91) 432 35 00 – fax: +48 (91) 432 35 36 – e-mail: contact@gryfit.com – www.gryfit.com

SELECTION - HEATING

While heating supplied hot air rises up, because its density is lower than the air density in the room. Therefore it is necessary to direct the airflow vertically down that it can get the occupied zone. A distance from the diffuser where supplied air velocity is down to zero is called vertical range.

SELECTION METHOD - HEATING

- 1°) Vertical airflow range = distance of the diffuser from the floor.
- 2°) ∆T = Temperature difference between supplied and ambient air.
- 3°) q = Airflow capacity of one diffuser.
- 4°) Selection of NA diameter of VBF diffuser.
- 5°) Control determined Lw and ∆pt compliance with intended requirements.

SELECTION - COOLING

While cooling supplied air has a tendency to go down, because its density is higher than air density in the room. Therefore it is necessary to direct the airflow horizontally that it, before reaching the occupied zone, decreases its velocity up to required value and covers the area of the room as large as possible at the same time. A horizontal distance between the diffuser and a point where the airflow enters the occupied zone is called horizontal range. The same distance when measured vertically, is called airflow falling.

VBF

GRYFIT

QUICK SELECTION

Vert	3 m							4 m											
Horizontal airflow range [m]					1,9 m							2,8 m							
∆ T [K]—►				5		10		15		20		5		10		15		20	
NA [mm]	200	q [m ³/h]	Lw [dB(A)] ∆pt [Pa]	250	22 5	350	26 10	420	28 15	490	30 20	330	25 9	460	29 18	570	31 26	650	33 35
	250	q [m ³/h]	Lw [dB(A)] ∆pt [Pa]	350	23 4	490	26 8	610	29 12	700	30 16	470	26 7	660	29 14	810	32 21	930	33 28
	315	q [m ³/h]	Lw [dB(A)] ∆pt [Pa]	500	23 3	710	27 6	870	29 9	1000	30 12	670	26 5	950	30 11	1160	32 16	1340	33 22
	400 450	q [m ³/h]	Lw [dB(A)] ∆pt [Pa]	770	23 2	1090	27 5	1340	29 7	1540	31 9	1030	26 4	1450	30 8	1780	32 12	2060	34 16
	500	q [m ³/h]	Lw [dB(A)] ∆pt [Pa]	820	23 2	1160	27 4	1420	29 7	1640	31 9	1100	26 4	1550	30 8	1900	32 12	2190	34 16
	630	q [m ³/h]	Lw [dB(A)] ∆pt [Pa]	1110	24 2	1570	27 4	1920	29 5	2220	31 7	1480	27 3	2090	30 6	2560	32 10	2960	34 13

Vert	5 m							6 m											
Horizor		3,7 m						4,6 m											
∆ T [K]→				5		10		15		20		5		10		15		20	
NA [mm]	200	q [m ³/h]	Lw [dB(A)] ∆pt [Pa]	410	28 14	580	32 27	710	34 41	820	35 55	490	30 20	690	34 40	850	36 59	980	37 79
	250	q [m ³/h]	Lw [dB(A)] ∆pt [Pa]	580	28 11	820	32 22	1010	34 32	1170	36 43	700	30 16	990	34 31	1210	36 47	1400	37 62
	315	q [m ³/h]	Lw [dB(A)] ∆pt [Pa]	840	28 9	1180	32 17	1450	34 26	1670	36 34	1000	30 12	1420	34 25	1740	36 37	2000	38 49
	400 450	q [m ³/h]	Lw [dB(A)] ∆pt [Pa]	1290	29 6	1820	32 13	2230	35 19	2570	36 26	1540	31 9	2180	34 18	2670	37 28	3090	38 37
	500	q [m ³/h]	Lw [dB(A)] ∆pt [Pa]	1370	29 6	1930	32 12	2370	35 18	2740	36 24	1640	31 9	2320	34 18	2840	37 26	3280	38 35
	630	q [m ³/h]	Lw [dB(A)] ∆pt [Pa]	1850	29 5	2620	33 10	3200	35 15	3700	36 20	2220	31 7	3140	35 14	3850	37 22	4440	38 29

Vert	ical air	flow range [m] 🔶		8	m		10 m						
Horizor	ntal air	flow range [m] 🔶		6,4	m		8,1 m						
		∆ T [K]→	5 10		15	20	5	10	15	20			
NA [mm]	200	q Lw [dB(A)] [m ³ / h] Δpt [Pa]	650 33 35	920 37 70	1130 ³⁹ 105	1300 40 141	820 35 55	1150 39 110	1410 41 165	1630 43 220			
	250	q Lw [dB(A)] [m³/h] ∆pt [Pa]	930 33 28	1320 37 55	1610 ³⁹ 83	1860 41 111	1170 36 43	1650 ³⁹ 87	2020 41 130	2330 43 173			
	315	q Lw [dB(A)] [m³/h] ∆pt [Pa]	1340 33 22	1890 37 44	2310 ³⁹ 65	2670 41 87	1670 36 34	2360 40 68	2890 42 102	3340 43 136			
	400 450	q Lw [dB(A)] [m³/h] Δpt [Pa]	2060 34 16	2910 37 33	3560 40 49	4110 41 65	2570 36 26	3640 40 51	4450 42 77	5140 44 102			
	500	q Lw [dB(A)] [m ³ / h] Δpt [Pa]	2190 34 16	3100 37 31	3790 40 47	4380 41 63	2740 36 24	3870 40 49	4740 42 73	5470 44 98			
	630	q Lw [dB(A)] [m ³ / h] Δpt [Pa]	2960 34 13	4190 38 26	5130 40 38	5920 41 51	3700 36 20	5230 40 40	6410 42 60	7400 44 80			

tel.: +48 (91) 432 35 00 - fax: +48 (91) 432 35 36 - e-mail: contact@gryfit.com - www.gryfit.com

GRYFIT

DIMENSIONS AND INSTALLATION METHOD

400

900

450

900

500

980

630

1200

INSTALLATION METHODS

Installation in the ventilation duct with circular section

Installation on the ceiling with the use of slings

øD1

DIMENSIONS

315

700

THERMOSTATIC ACTUATOR CHARACTERISTICS Working time : ~30 min 100 Percentage of vertically supplied air [%] 80 Cooling 60 eating+ 40 20 0 30 0 5 10 15 20 25 35 Supplied air temperature [°C]

NA [mm]

D1 [mm]

т

200

450

250

560

Electric servomotor characteristics

Voltage Power input while working Working time Control voltage Input resistance

24V or 230V AC/DC up to 4W \sim 150 sekund 0(2) \div 10V min. 100 k Ω

Servomotor control options

- local control with the use of potentiometer (manual setting),

- zonal control with the use of programmable regulator

