

Description

LAD is an supply air nozzle suitable for ventilation of large areas where long throws are required. The nozzle can be used for both heated and cooled air. LAD has a standard MF measure and can be installed directly on a male spigot in the desired direction.

- Directional airflow
- Long throws
- Simple installation

Maintenance

The visible parts of the diffuser can be wiped with a damp cloth.

Dimensions

0:	ØA	В	ØD	E	Free area	Weight
Size	mm	mm	mm	mm	A[m²]	кg
125	60	116	125	40	0.0029	0.10
160	95	140	160	40	0.0071	0.10
200	110	180	200	40	0.0095	0.20
250	145	205	250	60	0.0165	0.30
315	180	235	315	60	0.0254	0.50
400	225	270	400	80	0.0398	0.60

Order code							
Product Type			LAD	a 	bbb 		
Colour:	Untreated Other colour	0 1					
Size							

Material:	Aluminium
Standard finish:	Untreated or powder-coated

The diffuser is available in other colours. Please contact Lindab's sales department for further information.

395

9

Technical data

Capacity

Volume flow q_v [I/s] and [m³/h], total pressure Δp_t [Pa], throw $I_{0.3}$ and sound level L_{WA} [dB(A)] can be seen in the diagrams.

Throw I_{0.3}

Throw $\mathrm{I}_{0.3}$ can be seen in the diagrams for isothermal air at a terminal velocity of 0.3 m/s

Resulting sound effect level

The sound effect level from the nozzles must be added logarithmically to the sound effect level from the flow noise in the duct. See sample calculation, section *Nozzle calculations*.

Frequency-related sound effect level

The sound effect level in the frequency band is defined as L_{wok} = $L_{WA} +$ $K_{ok}.$ K_{ok} values can be seen in the table below.

Table 1

		Centre frequency Hz						
Size	63	125	250	500	1K	2K	4K	8K
125	13	4	3	-5	-4	-18	-21	-21
160	19	6	5	-3	-10	-23	-30	-34
200	18	6	1	-1	-10	-15	-18	-26
250	19	6	3	-1	-14	-21	-24	-26
315	22	5	2	-3	-12	-14	-22	-27
400	21	3	1	-5	-7	-10	-19	-25

Supply air

Calculation

Resulting sound effect level

To calculate the resulting sound effect level from the nozzles, add the sound effect level from the nozzles (L_{WA} nozzle) and the sound effect level from the flow noise in the duct (L_{WA} duct) logarithmically.

Diagram 1, sound effect duct, L_{WA} duct.

Diagram 2, addition of sound levels. Difference to be added to the highest dB value (dB)

Difference between the dB values (dB)

Sample calculation:

LAD-200	
∆P _t nozzle	

q = 1	00 l/s
90 P	а

Duct size:

In order to achieve a sensible distribution of the air out to the nozzles without using a damper, it is recommended that the pressure loss in the nozzle be 3 times higher than the dynamic pressure in the duct system.

Selected duct dimension	Ø 400
Number of nozzles at joint	6
Volume of air in the duct	6 x 100 = 600 l/s
L _{WA} duct (can be seen in diagram 1)	43 dB(A)
L _{WA} nozzle (can be seen in product di	iagram) 37 dB(A)
Difference between db values	6 dB(A)
Value to be added to the highest dB v	/alue
(diagram 2)	1 dB(A)
Resulting sound effect level: 43 +1	= 44 dB(A)

Extension of throw for two nozzles, positioned side by side:

If two nozzles are positioned next to each other, the air jets will be amplified, thereby extending the throw. To calculate this, use the diagram below, in which the distance between the nozzles is designated D. The calculation factor K_4 must be multiplied by the throw I_{03} . The throw is not extended further with more nozzles.

Sample calculation:

LAD-125. Distance D = 1.5 metres. Volume of air: q = 15 l/s

Diagram throw under s	elected nozzle
Specified throw:	l _{0.3} = 7 m
D [m] / l _{0.3} [m]	1.5 / 7 = 0.21
K ₄ calculation factor	

Can be seen in the diagram	K ₄ = 1.25

Resulting throw: $K_4 \times 10.3 = 1.25 \times 7 \text{ m} = 8.75 \text{ m}$

Calculation

Supply air with cooled air

Supply air with heated air

$$H = I \times tan \alpha$$

Terminal velocity V_X:

$$v_x = K_1 \times \frac{q}{X}$$

Deflection Y:

$$Y = K_2 \times \frac{X^3}{q^2} \times \Delta t$$

Sample calculation: Cooled air

Y

LAD-200:

 $q = 400 \text{ m}^{3}/\text{h}$ $\Delta t = -6K$ $\alpha = 30^{\circ}$ Final velocity $v_x = 0,3 \text{ m/s}$

$$v_x = K_1 \times \frac{q}{X}$$

 $X = K_1 \times \frac{q}{v_x} = 0,020 \times \frac{400}{0,3} = 27 \text{ m}$
 $Y = K_2 \times \frac{X^3}{q^2} \times \Delta t = 24 \times \frac{27^3}{400^2} \times 6 = 17,7 \text{ m}$
 $H = X \times \sin \alpha = 27 \times 0,5 = 13,5 \text{ m}$

Н $L = X \times \cos \alpha = 27 \times 0.87 = 23.4 \text{ m}$

Sample calculation: Heated air

LAD-200:	q = 400 m ³ /h
Final velocity	$\Delta t = -6K \alpha = 60^{\circ}$ v _x = 0,3 m/s
$X = K_1 \times \frac{q}{v_x} = 0.02$	$20 \times \frac{400}{0,3} = 27 \text{ m}$
$Y = K_2 \times \frac{X^3}{q^2} \times \Delta t = 3$	$24 \times \frac{27^3}{400^2} \times 6 = 17,7 \text{ m}$
$H = X \times \sin \alpha = 27 \times$	< 0,87 = 23,4 m
$H = X \times \sin \alpha = 27 \times L = X \times \cos \alpha = 27 \times 10^{-1}$	< 0,87 = 23,4 m < 0,5 = 13,5 m

Calculation factors:

	Eroo						
	area	K ₁		K ₂		K ₃	
Size	A m ²	m³/h	l/s	m³/h	l/s	m³/h	l/s
LAD							
125	0.0029	0.037	0.133	3.9	0.30	0.24	0.86
160	0.0071	0.023	0.083	15.6	1.20	0.122	0.44
200	0.0095	0.020	0.072	24.0	1.85	0.097	0.35
250	0.0165	0.0153	0.055	54.4	4.2	0.064	0.230
315	0.0254	0.0122	0.044	104	8.0	0.046	0.166
400	0.0398	0.0097	0.035	206	15.9	0.033	0.119
DAD							
160	0.0056	0.026	0.094	10.7	0.83	0.145	0.52
200	0.0095	0.020	0.072	24.0	1.85	0.097	0.35
250	0.0154	0.0157	0.057	49.0	3.78	0.068	0.24
315	0.0240	0.0127	0.046	96.0	7.41	0.048	0.17
GD							
	0.0027	0.038	0.137	3.5	0.27	0.26	0.92
GTI-1							
200	0.0200	0.0090	0.032	114	8.8	0.048	0.173
250	0.0310	0.0073	0.026	219	16.9	0.034	0.122
315	0.0490	0.0058	0.021	435	34	0.024	0.086
400	0.0780	0.0046	0.017	875	68	0.017	0.062

Vertical supply air with heated air

$$Y_m = K_3 \times \frac{q}{\sqrt{\Delta t}}$$
 (m)

Sample calculation:

LAD-160

The distance to the turning point of the air jet:

$$Y_m = K_3 \times \frac{q}{\sqrt{\Delta t}}$$
 (m)
 $Y_m = 0,122 \times \frac{200}{\sqrt{10}}$ (m)
 $Y_m = 7,7$ m

Calculation

401